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Abstract

Following Waterhouse we determine the maximal number of rational points for elliptic
curves defined over a finite field. Along the way we determine the isogeny classes of elliptic
curves defined over a finite field by describing the possible values of the trace of the geometric
Frobenius.

Let Fq be a finite field, where q = pa. Let E be an elliptic curve defined over Fq. The Hasse
bound implies that #E(Fq) ≤ q + 1 + b2√qc. Then the maximum of #E(Fq) where E is an
elliptic curve over Fq is a number Nq which is at most q + 1 + b2√qc.

Theorem 1. The number Nq is either q + 1 + b2√qc or q + b2√qc. It is q + 1 + b2√qc if and
only if at least one of the following occurs: p does not divide b2√qc; q is a square; q = p.

Proof. The number of rational point of an elliptic curve E defined over Fq equals q+1−β where
β is the trace of the geometric Frobenius of E. Then to prove the theorem it suffices to show
the following two things: 1) there exists an elliptic curve E defined over Fq such that the trace
β of the Frobenius equals −b2√qc if and only if either p does not divide b2√qc or q is a square
or q = p; 2) if p divides b2√qc then there exists an elliptic curve E defined over Fq such that
the trace β of the Frobenius equals −(b2√qc − 1). Remark that if p divides b2√qc then p does
not divide b2√qc − 1. Also remark that if p divides b2√qc then q = p is equivalent to requiring
p = 2, 3 and b2√qc = p

a+1
2 . Then the theorem is a consequence of the following result.

Theorem 2. Let β be an integer such that |β| ≤ b2√qc (q = pa, as above). Then there exists
an elliptic curve E defined over Fq such that the trace of the Frobenius equals β if and only if
one of the following cases occur:

• p does not divide β

• q is a square (i.e. a is even) and
β = ±2

√
q

or β = ±√q and p 6≡ 1(mod3)
or β = 0 and p 6≡ 1(mod4)

• q is not a square (i.e. a is odd) and
β = 0
or β = ±p a+1

2 and p = 2, 3.

Let A be a simple abelian variety of dimension g defined over the finite field Fq (where q = pa).
Call P (X) the mimimal polynomial of the geometric Frobenius. Call h(X) the characteristic
polynomial of the geometric Frobenius. We know that P (X) and h(X) have coefficients in Z and
that h(X) is a power of P (X). The constant term of h is qg. In particular for an elliptic curve
we have h(X) = X2 − βX + q for some integer β.
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The geometric Frobenius π is a Weil-q-number i.e. an algebraic integer π such that |ψ(π)| = q
for every embedding ψ : Q(π)→ Q̄. For an elliptic curve the roots of h(X) are π and q

π and so
β = π + q

π . In particular |β| ≤ 2
√
q.

The endomorphisms of A defined over Fq are a free Z-module EndA of finite rank. The
Q-algebra End0A = EndA ×Z Q is a central simple algebra over Q(π). Thus the center of
D := End0A is L := Q(π).

By the Brauer theory the L-algebra D is determined (up to isomorphism) by its invariants at
the places of L. The invariants are rational numbers in [0, 1), seen as representatives of residue
classes in Q/Z. The invariants at the complex places are always 0. The sum of all the invariants
is an integer. The l.c.m. of the invariants equals

√
[D : L].

The following theorem by Tate implies that the algebraic integer π determines D (remark
that it determines also the dimension of the variety).

Theorem 3 (Tate). The central simple algebra D/L does not split at every real place of L (i.e.
the invariant at every real place is 1

2). It does split at every finite place not above p (i.e. the
corresponding invariant is 0). For a finite place w over p the corresponding invariant is:

invw(D/L) =
w(π)
w(q)

[Lw : Qp] (mod Z)

where Lw is the completion of L at w. The dimension g of the variety is given by the formula

2g = [L : Q]
√

[D : L].

Proof. First case: the minimal polynomial of the Frobenius has degree 1.
We deduce that h(X) = (X − α)2 where α2 = q and 2α = β ∈ Z. Then α ∈ Z and α = ±√q.
In this case q is a square and β = ±2

√
q. Now we prove that there exists an elliptic curve

defined over Fq having such a minimal polynomial. The root of P (X) is a Weil-q-number by
construction. Then by the Honda-Tate theory there exists a simple abelian variety A defined
over Fq having minimal polynomial P (the isogeny class of A is uniquely determined by that
condition). So we have to prove that the dimension of A is 1. We calculate the invariants of the
central simple algebra D := End0(A) over L := Q(π). Now L = Q so there is only one infinite
prime, real. Then invariants are: inv∞ = 1

2 ; inv` = 0 for every prime ` 6= p. Since the sum of
the invariants is an integer we must have invp = 1

2 . The l.c.m. of the denominators is 2 so by
the Tate’s theorem we deduce that the dimension of A is 1.

Second case: the minimal polynomial of the Frobenius has degree 2.
In this case P (X) = h(X) = X2−βX+q. Remark that in this case |β| < 2

√
q: in fact |β| ≤ 2

√
q

and that π is a Weil-q-number so if |β| = 2
√
q then π = q/π = ±√q and we are in the preceeding

case.Hence π is a totally imaginary Weil-q-number. The roots of P (X) are Weil-q-numbers by
construction. Then by the Honda-Tate theory there exists a simple abelian variety A defined
over Fq having minimal polynomial P (the isogeny class of A is uniquely determined by that
condition). We study the invariants of the central simple algebra D := End0(A) over L := Q(π).
We have L = Q(

√
β2 − 4q) where β2 < 4q. Since L is an extension of Q of degree 2, by the

Tate’s theorem we deduce that A is an elliptic curve if and only if the l.c.m. of its invariants
(which is

√
[D : L]) is equal to 1.

Since π is totally imaginary there are no real embeddings of L into Q. Then the invariants
of D corresponding to the infinite primes are zero. The invariants for the primes of L over the
rational primes different from p are zero. If there is only one prime over (p) we deduce (because
the sum of the invariants is an integer) that D has every invariant zero. If (p) ramifies or
stays prime in Q(

√
β2 − 4q) then there exists an elliptic curve corresponding to the considered

mimimal polynomial.
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We conclude the study of this case by proving the following. If (p) splits completely in
Q(

√
β2 − 4q) then there exists an elliptic curve corresponding to the considered mimimal polyno-

mial if and only if p does not divide β. So suppose that (p) splits completely in L, which means
that (p) = P1P2. Let i = 1, 2. Since the inertia degree and ramification index of Pi over Q are
both 1 then the completion LPi

has degree 1 over Qp. Then by the Tate’s theorem the invariant
at Pi has denominator 1 if and only if vPi

(q) divides vPi
(π). Since q = pa we have (q) = Pa1Pa2 .

Since π is an algebraic integer of L of norm q and the primes over (p) are only P1 and P2 we have
(π) = Pt11 P

t2
1 where t1 + t2 = a. Then vPi(q) = a and vPi(π) = ti. Since t1 + t2 = a it follows

that vPi
(q) divides vPi

(π) if and only if either t1 or t2 is zero. Remark that ( qπ ) = Pt21 P
t1
1 . Then

either t1 or t2 is zero if and only if β (which is π + q
π ) does not belong neither to P1 nor to P2.

Since β is an integer it belongs to P1 if and only if it belongs to P2. Because we are working
in a Dedekind ring and the ideals P1 and P2 are coprime, the condition is then equivalent to
requiring that β does not belong to P1P2. This exactly means that β is not a multiple of p.

Conclusions. We have an elliptic curve defined over Fq such that the trace of the geometric
Frobenius is β in the following cases: if q is a square and β = ±√q (from the first case); if
β2 < 4q and (p) does not split completely in Q(

√
β2 − 4q) (from the second case); if β2 < 4q,

(p) splits completely in Q(
√
β2 − 4q) and p - β (from the second case). We conclude thanks to

the following lemma.
Remark that in the cases described by the lemma we are in the second case since β2 < 4q.

Also remark that p - β implies that we are in the second case and we have an elliptic curve both
whether p splits or not.

Lemma 4. Let q = pa and let β be an integer such that β2 < 4q. The prime p of Z does not
split completely in Q(

√
β2 − 4q) if and only if one of the following cases occur:

• q is a square and
β = 0, p 6≡ 1(mod4)
or β = ±√q, p 6≡ 1(mod3)

• q is not a square and
β = 0
or β = ±p a+1

2 , p = 2, 3.

Proof. Write β = pbλ where λ is either zero or coprime to p. If λ = 0 or equivalently β = 0 then
Q(

√
β2 − 4q) = Q(

√
−p) if a is odd and Q(

√
β2 − 4q) = Q(

√
i) if a is even. If a is odd p clearly

ramifies. If a is even then 2 ramifies and p 6= 2 stays prime in the Gaussian integers if and only
if p ≡ 3(mod4). So if β = 0 then p does not split completely in Q(

√
β2 − 4q) if q is not a square

or if p 6≡ 1(mod4).
If λ 6= 0 and 2b < a then p splits completely. We have Q(

√
β2 − 4q) = Q(

√
λ2 − 4pa−2b).

The prime p does not divide the discriminant of this extension of Q so p does not ramify.
We have to exclude the case where p stays prime which means that (p) is a maximal ideal.
This is an elementary computation. Let m2 be the maximal square dividing λ2 − 4pa−2b, let
γ = λ2 − 4pa−2b/m2 and call λ′ = λ/m. Remark that (m, p) = 1. Let Z[α] be the ring of
integers of Q(

√
β2 − 4q): according to whether γ is congruent to 1 or to 3 modulo 4 one can

take α = 1−√γ
2 or α =

√
γ. The mimimal polynomial f of α is x2 + 2x + 1−γ

4 or respectively
x2− γ. It suffices to show that the class of f in Fp[x] is not an irreducible polynomial. The class
of f in Fp[x] is respectively (x+ 1+λ′

2 )(x+ 1−λ′

2 ) or (x+ λ′)(x− λ′).
If λ 6= 0 and 2b = a (a is even!) then because β2 < 4q we deduce that |λ| < 2 hence λ = ±1.

Hence β = ±√q. In this case Q(
√
β2 − 4q) = Q(

√
−3) and one easily has the following: 3
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ramifies, p ≡ 2(mod3) stays prime, p ≡ 1(mod3) splits completely. So if β = ±√q then p does
not split completely in Q(

√
β2 − 4q) if p 6≡ 1(mod3).

If λ 6= 0 and 2b ≥ a then because β2 < 4q we deduce that |λ| < 2 hence λ = ±1. Also
2b < a + 1 because β2 < 4q. So we have 2b = a + 1 (a is odd!) and therefore (because
β2 < 4q) p is 2 or 3. If p = 2 we have Q(

√
β2 − 4q) = Q(

√
i) and 2 ramifies. If p = 3 we have

Q(
√
β2 − 4q) = Q(

√
−3) and 3 ramifies. So if β = ±p a+1

2 and p = 2, 3 then p does not split
completely in Q(

√
β2 − 4q).

By Honda-Tate theory the isogeny classes of elliptic curves defined over Fq are determined
by the mimimal polinomial of the Frobenius and hence by its trace (it being monic and with
constant term q). Since we know that this trace β is an integer such that |β| ≤ 2

√
q, Theorem 2

determines the isogeny classes of elliptic curves defined over Fq.
An elliptic curve is supersingular iff there exists a power of π which is a power of p. Then from

the proof of Theorem 2 we have: the elliptic curves arising from the first case are supersingular;
the elliptic curves arising from the second case are ordinary if (p) splits (one can see this from
the factorization of the ideals generated by p and π); the elliptic curves arising from the second
case are supersingular if (p) does not split (one can calculate π in each sub-case and check the
criterion for supersingularity).
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vol. 2 (1969), pp.521–560.

4


