Elliptic curves over finite fields with many points

Antonella Perucca

Abstract

Following Waterhouse we determine the maximal number of rational points for elliptic curves defined over a finite field. Along the way we determine the isogeny classes of elliptic curves defined over a finite field by describing the possible values of the trace of the geometric Frobenius.

Let \mathbb{F}_{q} be a finite field, where $q=p^{a}$. Let E be an elliptic curve defined over \mathbb{F}_{q}. The Hasse bound implies that $\# E\left(\mathbb{F}_{q}\right) \leq q+1+\lfloor 2 \sqrt{q}\rfloor$. Then the maximum of $\# E\left(\mathbb{F}_{q}\right)$ where E is an elliptic curve over \mathbb{F}_{q} is a number N_{q} which is at most $q+1+\lfloor 2 \sqrt{q}\rfloor$.

Theorem 1. The number N_{q} is either $q+1+\lfloor 2 \sqrt{q}\rfloor$ or $q+\lfloor 2 \sqrt{q}\rfloor$. It is $q+1+\lfloor 2 \sqrt{q}\rfloor$ if and only if at least one of the following occurs: p does not divide $\lfloor 2 \sqrt{q}\rfloor ; q$ is a square; $q=p$.

Proof. The number of rational point of an elliptic curve E defined over \mathbb{F}_{q} equals $q+1-\beta$ where β is the trace of the geometric Frobenius of E. Then to prove the theorem it suffices to show the following two things: 1) there exists an elliptic curve E defined over \mathbb{F}_{q} such that the trace β of the Frobenius equals $-\lfloor 2 \sqrt{q}\rfloor$ if and only if either p does not divide $\lfloor 2 \sqrt{q}\rfloor$ or q is a square or $q=p ; 2$) if p divides $\lfloor 2 \sqrt{q}\rfloor$ then there exists an elliptic curve E defined over \mathbb{F}_{q} such that the trace β of the Frobenius equals $-(\lfloor 2 \sqrt{q}\rfloor-1)$. Remark that if p divides $\lfloor 2 \sqrt{q}\rfloor$ then p does not divide $\lfloor 2 \sqrt{q}\rfloor-1$. Also remark that if p divides $\lfloor 2 \sqrt{q}\rfloor$ then $q=p$ is equivalent to requiring $p=2,3$ and $\lfloor 2 \sqrt{q}\rfloor=p^{\frac{a+1}{2}}$. Then the theorem is a consequence of the following result.

Theorem 2. Let β be an integer such that $|\beta| \leq\lfloor 2 \sqrt{q}\rfloor$ ($q=p^{a}$, as above). Then there exists an elliptic curve E defined over \mathbb{F}_{q} such that the trace of the Frobenius equals β if and only if one of the following cases occur:

- p does not divide β
- q is a square (i.e. a is even) and
$\beta= \pm 2 \sqrt{q}$
or $\beta= \pm \sqrt{q}$ and $p \not \equiv 1(\bmod 3)$
or $\beta=0$ and $p \not \equiv 1(\bmod 4)$
- q is not a square (i.e. a is odd) and
$\beta=0$
or $\beta= \pm p^{\frac{a+1}{2}}$ and $p=2,3$.

Let A be a simple abelian variety of dimension g defined over the finite field \mathbb{F}_{q} (where $q=p^{a}$). Call $P(X)$ the mimimal polynomial of the geometric Frobenius. Call $h(X)$ the characteristic polynomial of the geometric Frobenius. We know that $P(X)$ and $h(X)$ have coefficients in \mathbb{Z} and that $h(X)$ is a power of $P(X)$. The constant term of h is q^{g}. In particular for an elliptic curve we have $h(X)=X^{2}-\beta X+q$ for some integer β.

The geometric Frobenius π is a Weil-q-number i.e. an algebraic integer π such that $|\psi(\pi)|=q$ for every embedding $\psi: \mathbb{Q}(\pi) \rightarrow \overline{\mathbb{Q}}$. For an elliptic curve the roots of $h(X)$ are π and $\frac{q}{\pi}$ and so $\beta=\pi+\frac{q}{\pi}$. In particular $|\beta| \leq 2 \sqrt{q}$.

The endomorphisms of A defined over \mathbb{F}_{q} are a free \mathbb{Z}-module End A of finite rank. The \mathbb{Q}-algebra $\operatorname{End}_{0} A=\operatorname{End} A \times_{\mathbb{Z}} \mathbb{Q}$ is a central simple algebra over $\mathbb{Q}(\pi)$. Thus the center of $D:=\operatorname{End}_{0} A$ is $L:=\mathbb{Q}(\pi)$.

By the Brauer theory the L-algebra D is determined (up to isomorphism) by its invariants at the places of L. The invariants are rational numbers in $[0,1$), seen as representatives of residue classes in \mathbb{Q} / \mathbb{Z}. The invariants at the complex places are always 0 . The sum of all the invariants is an integer. The l.c.m. of the invariants equals $\sqrt{[D: L]}$.

The following theorem by Tate implies that the algebraic integer π determines D (remark that it determines also the dimension of the variety).
Theorem 3 (Tate). The central simple algebra D / L does not split at every real place of L (i.e. the invariant at every real place is $\frac{1}{2}$). It does split at every finite place not above p (i.e. the corresponding invariant is 0). For a finite place w over p the corresponding invariant is:

$$
\operatorname{inv_{w}}(D / L)=\frac{w(\pi)}{w(q)}\left[L_{w}: \mathbb{Q}_{p}\right] \quad(\bmod \mathbb{Z})
$$

where L_{w} is the completion of L at w. The dimension g of the variety is given by the formula

$$
2 g=[L: \mathbb{Q}] \sqrt{[D: L]} .
$$

Proof. First case: the minimal polynomial of the Frobenius has degree 1.
We deduce that $h(X)=(X-\alpha)^{2}$ where $\alpha^{2}=q$ and $2 \alpha=\beta \in \mathbb{Z}$. Then $\alpha \in \mathbb{Z}$ and $\alpha= \pm \sqrt{q}$. In this case q is a square and $\beta= \pm 2 \sqrt{q}$. Now we prove that there exists an elliptic curve defined over \mathbb{F}_{q} having such a minimal polynomial. The root of $P(X)$ is a Weil-q-number by construction. Then by the Honda-Tate theory there exists a simple abelian variety A defined over \mathbb{F}_{q} having minimal polynomial P (the isogeny class of A is uniquely determined by that condition). So we have to prove that the dimension of A is 1 . We calculate the invariants of the central simple algebra $D:=\operatorname{End}_{0}(A)$ over $L:=\mathbb{Q}(\pi)$. Now $L=\mathbb{Q}$ so there is only one infinite prime, real. Then invariants are: $i n v_{\infty}=\frac{1}{2} ; i n v_{\ell}=0$ for every prime $\ell \neq p$. Since the sum of the invariants is an integer we must have $i n v_{p}=\frac{1}{2}$. The l.c.m. of the denominators is 2 so by the Tate's theorem we deduce that the dimension of A is 1 .

Second case: the minimal polynomial of the Frobenius has degree 2.
In this case $P(X)=h(X)=X^{2}-\beta X+q$. Remark that in this case $|\beta|<2 \sqrt{q}$: in fact $|\beta| \leq 2 \sqrt{q}$ and that π is a Weil-q-number so if $|\beta|=2 \sqrt{q}$ then $\pi=q / \pi= \pm \sqrt{q}$ and we are in the preceeding case.Hence π is a totally imaginary Weil-q-number. The roots of $P(X)$ are Weil-q-numbers by construction. Then by the Honda-Tate theory there exists a simple abelian variety A defined over \mathbb{F}_{q} having minimal polynomial P (the isogeny class of A is uniquely determined by that condition). We study the invariants of the central simple algebra $D:=\operatorname{End}_{0}(A)$ over $L:=\mathbb{Q}(\pi)$. We have $L=\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ where $\beta^{2}<4 q$. Since L is an extension of \mathbb{Q} of degree 2 , by the Tate's theorem we deduce that A is an elliptic curve if and only if the l.c.m. of its invariants (which is $\sqrt{[D: L]}$) is equal to 1 .

Since π is totally imaginary there are no real embeddings of L into \mathbb{Q}. Then the invariants of D corresponding to the infinite primes are zero. The invariants for the primes of L over the rational primes different from p are zero. If there is only one prime over (p) we deduce (because the sum of the invariants is an integer) that D has every invariant zero. If (p) ramifies or stays prime in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ then there exists an elliptic curve corresponding to the considered mimimal polynomial.

We conclude the study of this case by proving the following. If (p) splits completely in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ then there exists an elliptic curve corresponding to the considered mimimal polynomial if and only if p does not divide β. So suppose that (p) splits completely in L, which means that $(p)=\mathcal{P}_{1} \mathcal{P}_{2}$. Let $i=1,2$. Since the inertia degree and ramification index of \mathcal{P}_{i} over \mathbb{Q} are both 1 then the completion $L_{\mathcal{P}_{i}}$ has degree 1 over \mathbb{Q}_{p}. Then by the Tate's theorem the invariant at \mathcal{P}_{i} has denominator 1 if and only if $v_{\mathcal{P}_{i}}(q)$ divides $v_{\mathcal{P}_{i}}(\pi)$. Since $q=p^{a}$ we have $(q)=\mathcal{P}_{1}^{a} \mathcal{P}_{2}^{a}$. Since π is an algebraic integer of L of norm q and the primes over (p) are only \mathcal{P}_{1} and \mathcal{P}_{2} we have $(\pi)=\mathcal{P}_{1}^{t_{1}} \mathcal{P}_{1}^{t_{2}}$ where $t_{1}+t_{2}=a$. Then $v_{\mathcal{P}_{i}}(q)=a$ and $v_{\mathcal{P}_{i}}(\pi)=t_{i}$. Since $t_{1}+t_{2}=a$ it follows that $v_{\mathcal{P}_{i}}(q)$ divides $v_{\mathcal{P}_{i}}(\pi)$ if and only if either t_{1} or t_{2} is zero. Remark that $\left(\frac{q}{\pi}\right)=\mathcal{P}_{1}^{t_{2}} \mathcal{P}_{1}^{t_{1}}$. Then either t_{1} or t_{2} is zero if and only if β (which is $\pi+\frac{q}{\pi}$) does not belong neither to \mathcal{P}_{1} nor to \mathcal{P}_{2}. Since β is an integer it belongs to \mathcal{P}_{1} if and only if it belongs to \mathcal{P}_{2}. Because we are working in a Dedekind ring and the ideals \mathcal{P}_{1} and \mathcal{P}_{2} are coprime, the condition is then equivalent to requiring that β does not belong to $\mathcal{P}_{1} \mathcal{P}_{2}$. This exactly means that β is not a multiple of p.

Conclusions. We have an elliptic curve defined over \mathbb{F}_{q} such that the trace of the geometric Frobenius is β in the following cases: if q is a square and $\beta= \pm \sqrt{q}$ (from the first case); if $\beta^{2}<4 q$ and (p) does not split completely in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ (from the second case); if $\beta^{2}<4 q$, (p) splits completely in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ and $p \nmid \beta$ (from the second case). We conclude thanks to the following lemma.

Remark that in the cases described by the lemma we are in the second case since $\beta^{2}<4 q$. Also remark that $p \nmid \beta$ implies that we are in the second case and we have an elliptic curve both whether p splits or not.

Lemma 4. Let $q=p^{a}$ and let β be an integer such that $\beta^{2}<4 q$. The prime p of \mathbb{Z} does not split completely in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ if and only if one of the following cases occur:

- q is a square and
$\beta=0, p \not \equiv 1(\bmod 4)$
or $\beta= \pm \sqrt{q}, p \not \equiv 1(\bmod 3)$
- q is not a square and
$\beta=0$
or $\beta= \pm p^{\frac{a+1}{2}}, p=2,3$.
Proof. Write $\beta=p^{b} \lambda$ where λ is either zero or coprime to p. If $\lambda=0$ or equivalently $\beta=0$ then $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)=\mathbb{Q}(\sqrt{-p})$ if a is odd and $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)=\mathbb{Q}(\sqrt{i})$ if a is even. If a is odd p clearly ramifies. If a is even then 2 ramifies and $p \neq 2$ stays prime in the Gaussian integers if and only if $p \equiv 3(\bmod 4)$. So if $\beta=0$ then p does not split completely in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ if q is not a square or if $p \not \equiv 1(\bmod 4)$.

If $\lambda \neq 0$ and $2 b<a$ then p splits completely. We have $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)=\mathbb{Q}\left(\sqrt{\lambda^{2}-4 p^{a-2 b}}\right)$. The prime p does not divide the discriminant of this extension of \mathbb{Q} so p does not ramify. We have to exclude the case where p stays prime which means that (p) is a maximal ideal. This is an elementary computation. Let m^{2} be the maximal square dividing $\lambda^{2}-4 p^{a-2 b}$, let $\gamma=\lambda^{2}-4 p^{a-2 b} / m^{2}$ and call $\lambda^{\prime}=\lambda / m$. Remark that $(m, p)=1$. Let $\mathbb{Z}[\alpha]$ be the ring of integers of $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$: according to whether γ is congruent to 1 or to 3 modulo 4 one can take $\alpha=\frac{1-\sqrt{\gamma}}{2}$ or $\alpha=\sqrt{\gamma}$. The mimimal polynomial f of α is $x^{2}+2 x+\frac{1-\gamma}{4}$ or respectively $x^{2}-\gamma$. It suffices to show that the class of f in $\mathbb{F}_{p}[x]$ is not an irreducible polynomial. The class of f in $\mathbb{F}_{p}[x]$ is respectively $\left(x+\frac{1+\lambda^{\prime}}{2}\right)\left(x+\frac{1-\lambda^{\prime}}{2}\right)$ or $\left(x+\lambda^{\prime}\right)\left(x-\lambda^{\prime}\right)$.

If $\lambda \neq 0$ and $2 b=a$ (a is even!) then because $\beta^{2}<4 q$ we deduce that $|\lambda|<2$ hence $\lambda= \pm 1$. Hence $\beta= \pm \sqrt{q}$. In this case $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)=\mathbb{Q}(\sqrt{-3})$ and one easily has the following: 3
ramifies, $p \equiv 2(\bmod 3)$ stays prime, $p \equiv 1(\bmod 3)$ splits completely. So if $\beta= \pm \sqrt{q}$ then p does not split completely in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$ if $p \not \equiv 1(\bmod 3)$.

If $\lambda \neq 0$ and $2 b \geq a$ then because $\beta^{2}<4 q$ we deduce that $|\lambda|<2$ hence $\lambda= \pm 1$. Also $2 b<a+1$ because $\beta^{2}<4 q$. So we have $2 b=a+1$ (a is odd!) and therefore (because $\left.\beta^{2}<4 q\right) p$ is 2 or 3 . If $p=2$ we have $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)=\mathbb{Q}(\sqrt{i})$ and 2 ramifies. If $p=3$ we have $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)=\mathbb{Q}(\sqrt{-3})$ and 3 ramifies. So if $\beta= \pm p^{\frac{a+1}{2}}$ and $p=2,3$ then p does not split completely in $\mathbb{Q}\left(\sqrt{\beta^{2}-4 q}\right)$.

By Honda-Tate theory the isogeny classes of elliptic curves defined over \mathbb{F}_{q} are determined by the mimimal polinomial of the Frobenius and hence by its trace (it being monic and with constant term q). Since we know that this trace β is an integer such that $|\beta| \leq 2 \sqrt{q}$, Theorem 2 determines the isogeny classes of elliptic curves defined over \mathbb{F}_{q}.

An elliptic curve is supersingular iff there exists a power of π which is a power of p. Then from the proof of Theorem 2 we have: the elliptic curves arising from the first case are supersingular; the elliptic curves arising from the second case are ordinary if (p) splits (one can see this from the factorization of the ideals generated by p and π); the elliptic curves arising from the second case are supersingular if (p) does not split (one can calculate π in each sub-case and check the criterion for supersingularity).

References

[1] D. Husemöller, Elliptic Curves, Springer Verlag, Graduate Text in Mathematics (111), 2004.
[2] D. Mumford, Abelian Varieties, Oxford University Press, 1970.
[3] F. Oort, Abelian varieties over finite fields, http://www.math.uu.nl/people/oort/A-AVffGoe07-2-oort.ps
[4] J. H. Silverman, The arithmetic of elliptic curves, Springer Verlag, Graduate Text in Mathematics (106), 1986.
[5] I. Reiner, Maximal Orders, Academic Press, 1975.
[6] W. C. Waterhouse, Abelian varieties over finite fields, Ann. scient. Éc. Norm. Sup., Série 4 vol. 2 (1969), pp.521-560.

