Paris, nov.3, 2008
Dear Antonella,
Your question about the analytic density of sets of primes can be solved in the following way.

Choose some c between 0 and 1, e.g. $c=1 / 2$. We shall consider functions of a variable x with $x \in I=[0, c]$.

Let P be the set of all primes. If $p \in P$, define $f_{p}(x)=-1 / p^{1+x} \cdot \log (x)$. The f_{p} 's have the following properties :
a) they are continuous and ≥ 0 on I and take the value 0 at $x=0$.
b) the series $f(x)=\sum f_{p}(x)$ converges for every $x \in I$; the convergence is uniform on every compact subset of I which does not contain 0 .
c) we have $\lim f(x)=1$ when $x \rightarrow 0, x \neq 0$. (This shows that f is discontinuous at 0 , since $f(0)=0$ because of a).

These properties are enough for constructing a no-density subset of P. More precisely :

Claim - There exists a subset Q of P such that, if one defines f_{Q} as the sum of the f_{p} 's for $p \in Q$, one has lim.inf $f_{Q}(x)=0$ and \lim.sup $f_{Q}(x)=1$ when $x \rightarrow 0, x>0$.

In other words, the upper analytic density of Q is 1 , and its lower analytic density is 0 , which is what you wanted (or maybe what you did not want ...).

I feel there should be a functional analysis proof of this claim, à la BanachSteinhaus (see the comments in Bourbaki EVT V.89, on the method of the "bosse glissante" - indeed, if you draw by computer the graphs of some of the f_{p} 's, you shall see they have bumps which are slowly sliding towards 0).

Since I did not manage to find such a nice and clean proof, I have to use a rather pedestrian method. Let me first reformulate the Claim above in a more concrete form :
Claim - There exists $Q \subset P$ and $\left.u_{n}, v_{n} \in\right] 0, c\left[\right.$ with $u_{n}, v_{n} \rightarrow 0, f_{Q}\left(u_{n}\right)<1 / n$ and $f_{Q}\left(v_{n}\right)>1-1 / n$ for all n.

To prove this, we are going to construct by induction on $N \geq 1$ a subset Q_{N} of P and points $\left.u_{N}, v_{N} \in\right] 0, c[$ with the following properties :
i) Q_{N} is finite, and contains Q_{N-1};
ii) $f_{Q_{N}}\left(u_{n}\right)<1 / n$ and $f_{Q_{N}}\left(v_{n}\right)>1-1 / n$ for every $n \leq N$.
[Once this is done, we take for Q the union of the Q_{N} 's and we win.]
Let us do the induction step. Note that, if M is large enough, the sums $\sum_{p>M} f_{p}\left(x_{n}\right), n \leq N-1$, are arbitrary small. Since the conditions " $<1 / n "$ and " $>1-1 / n$ " define open sets, this implies that there exists M_{n} such that $f_{R}\left(u_{n}\right)<1 / n$ and $f_{R}\left(v_{n}\right)>1-1 / n$ for every $n<N$ and every Q which is the union of Q_{N-1} and a set Y of primes $>M_{n}$. We are going to choose Q_{N} of that form : $Q_{N}=Q_{N-1} \cup Y$ where all the primes in Y are $>M_{n}$. With such a choice, we only have to care about condition ii) for u_{N} and v_{N}. We take u_{N} small enough so that $f_{Q_{N-1}}\left(u_{N}\right)<1 / N$; this is possible since $f_{Q_{N-1}}(x) \rightarrow 0$ when $x \rightarrow 0$.

By replacing M_{n} by a larger value, if necessary, we shall have $f_{Q_{N}}\left(u_{N}\right)<1 / N$ for every choice of Y, as long as the primes in Y are $>M_{n}$. We now have to choose v_{N}. This is where we use the fact that $f_{P}(x) \rightarrow 1$ when $x \rightarrow 0$. There is a neighborhood W of 0 such that $\left|1-f_{P}(x)\right|<1 / 2 N$ for every $x \in W$. If this neighborhood is small enough the sum of the $f_{p}(x)$, for $p<M_{n}$, is $<1 / 4 N$ on W. Now, we choose v_{N} in W; we have $\left|1-\sum_{p \geq M_{n}} f_{p}\left(v_{N}\right)\right|<3 / 4 N$. By choosing for Y a large enough finite set of primes $>M_{n}$, we have $f_{Y}\left(v_{N}\right)>1-1 / N$ and a fortiori $f_{Q_{N}}>1-1 / N$, where $Q_{N}=Q_{N-1} \cup Y$.

Voilà. As I said, it is a very pedestrian proof. Clearly there is a more general statement behind this; whenever a convergence is not uniform, one can extract ugly-looking subsequences.

Best wishes

J-P.Serre

