Arithmetic billiards in dimension \(n \)

We assume that the reader is familiar with the setting of the two-dimensional arithmetic billiards.

Theorem 1. Let us call \(x_1, x_2, ..., x_n \), the (positive and integer) variables, and let \(a_1, a_2, ..., a_n \), their maximal value. Then the total length of the path in a \(n \)-dimensional cuboid is equal to \(\text{lcm}(a_1, a_2, ..., a_n) \).

Proof. First of all, when the path hits one corner, the coordinates of that corner must be:

\[
\begin{cases}
x_1 = 0 \text{ or } x_1 = a_1 \\
x_2 = 0 \text{ or } x_2 = a_2 \\
\vdots \\
x_n = 0 \text{ or } x_n = a_n
\end{cases}
\]

Let us now call \(c_1, c_2, ..., c_n \), the coordinates of the hit corner. Then we know that \(c_1, c_2, ..., c_n \) have to be a positive common multiple of \(a_1, a_2, ..., a_n \), so at least \(\text{lcm}(a_1, a_2, ..., a_n) \). On the other hand, after that amount of unitary steps in the path (independently of the reflections) each coordinate \(x_i \) is a multiple of \(a_i \) and hence we are in a corner.

Let \(I = \{1, \ldots, n\} \) and for every non-empty subset \(J \subseteq I \) write \(\text{lcm}(a_J) \) for the least common multiple of the numbers \(a_i \) with \(i \in J \).

Theorem 2. Let us call \(x_1, x_2, ..., x_n \), the (positive and integer) variables, and let \(a_1, a_2, ..., a_n \), their maximal value. The total amount of bouncing points in the \(n \)-dimensional arithmetic billiard is:

\[
\text{lcm}(a_I) \cdot \sum_{J \subseteq I, J \neq \emptyset} (-1)^{|J|+1} \frac{1}{\text{lcm}(a_J)}
\]

Proof. The number of bouncing points on the faces \(x_i = 0 \) or \(x_i = a_i \) equals \(\frac{\text{lcm}(a_1, a_2, ..., a_n)}{a_i} \). Similarly, on an edge \(x_i = 0 \) or \(x_i = a_i \) for all \(i \in J \), where \(J \) is a non-empty subset of \(\{1, \ldots, n\} \), equals \(\frac{\text{lcm}(a_J)}{\text{lcm}(a_J)} \). This formula is then obtained by the inclusion-exclusion principle while counting the bouncing points on the faces (we have to keep track of points which are bouncing points for several faces simultaneously).

Open questions

For an \(n \)-th dimensional billiard with the path starting at the point \((0, \ldots, 0)\) and each coordinate increasing or decreasing by one at each step:

- In which corner does the ball land?
 This question is probably clarified by considering the highest power of 2 dividing the numbers \(a_i \).

- How many intersection points does the path have?
 Many examples need to be investigate to formulate a conjecture.

In general, what happens if the starting point is not \((0, \ldots, 0)\) but another point in the arithmetic billiard?